umami package#
Subpackages#
- umami.configuration package
- umami.data_tools package
- umami.evaluation_tools package
- umami.helper_tools package
- umami.input_vars_tools package
- umami.metrics package
- umami.models package
- umami.plotting_tools package
- umami.preprocessing_tools package
- Subpackages
- umami.preprocessing_tools.resampling package
- Submodules
- umami.preprocessing_tools.resampling.count_sampling module
- umami.preprocessing_tools.resampling.importance_sampling_no_replace module
- umami.preprocessing_tools.resampling.pdf_sampling module
- umami.preprocessing_tools.resampling.resampling_base module
- umami.preprocessing_tools.resampling.weighting module
- Module contents
- umami.preprocessing_tools.resampling package
- Submodules
- umami.preprocessing_tools.configuration module
GeneralSettingsGeneralSettings.apply_atlas_styleGeneralSettings.as_dict()GeneralSettings.atlas_first_tagGeneralSettings.atlas_second_tagGeneralSettings.compressionGeneralSettings.concat_jet_tracksGeneralSettings.convert_to_tfrecordGeneralSettings.dict_fileGeneralSettings.legend_sample_categoryGeneralSettings.outfile_nameGeneralSettings.outfile_name_validationGeneralSettings.plot_nameGeneralSettings.plot_options_as_dict()GeneralSettings.plot_typeGeneralSettings.precisionGeneralSettings.use_atlas_tagGeneralSettings.var_file
PreparationPreprocessConfigurationSampleSamplingSamplingOptionsSamplingOptions.as_dict()SamplingOptions.bool_attach_sample_weightsSamplingOptions.custom_n_jets_initialSamplingOptions.fractionsSamplingOptions.intermediate_index_fileSamplingOptions.intermediate_index_file_validationSamplingOptions.max_upsampling_ratioSamplingOptions.n_jetsSamplingOptions.n_jets_scalingSamplingOptions.n_jets_to_plotSamplingOptions.n_jets_validationSamplingOptions.samples_trainingSamplingOptions.samples_validationSamplingOptions.sampling_fractionSamplingOptions.sampling_variablesSamplingOptions.save_track_labelsSamplingOptions.save_tracksSamplingOptions.target_distributionSamplingOptions.tracks_namesSamplingOptions.weighting_target_flavour
check_key()
- umami.preprocessing_tools.merging module
- umami.preprocessing_tools.preparation module
- umami.preprocessing_tools.scaling module
- umami.preprocessing_tools.ttbar_merge module
- umami.preprocessing_tools.utils module
- umami.preprocessing_tools.writing_train_file module
- Module contents
- Subpackages
- umami.tests package
- Subpackages
- umami.tests.integration package
- Submodules
- umami.tests.integration.test_examples module
- umami.tests.integration.test_input_vars_plot module
- umami.tests.integration.test_plotting_umami module
- umami.tests.integration.test_preprocessing module
- umami.tests.integration.test_preprocessing_upp module
- umami.tests.integration.test_train module
- Module contents
- umami.tests.unit package
- umami.tests.integration package
- Module contents
- Subpackages
- umami.tf_tools package
- Submodules
- umami.tf_tools.convert_to_record module
- umami.tf_tools.generators module
- umami.tf_tools.layers module
- umami.tf_tools.load_tfrecord module
- umami.tf_tools.models module
- umami.tf_tools.tddgenerators module
TDDCadsGeneratorTDDDipsGeneratorTDDDl1GeneratorTDDGeneratorTDDGenerator.calculate_weights()TDDGenerator.get_n_dim()TDDGenerator.get_n_jet_features()TDDGenerator.get_n_jets()TDDGenerator.get_n_trk_features()TDDGenerator.get_n_trks()TDDGenerator.get_normalisation_arrays()TDDGenerator.get_track_vars()TDDGenerator.load_in_memory()TDDGenerator.scale_input()TDDGenerator.scale_tracks()
TDDUmamiConditionGeneratorTDDUmamiGeneratorfilter_dictionary()get_generator()
- umami.tf_tools.tools module
- Module contents
- umami.tools package
- umami.train_tools package
- Submodules
- umami.train_tools.configuration module
EvaluationSettingsConfigEvaluationSettingsConfig.add_eval_variablesEvaluationSettingsConfig.calculate_saliencyEvaluationSettingsConfig.eff_maxEvaluationSettingsConfig.eff_minEvaluationSettingsConfig.eval_batch_sizeEvaluationSettingsConfig.evaluate_traind_modelEvaluationSettingsConfig.extra_classes_to_evaluateEvaluationSettingsConfig.figsizeEvaluationSettingsConfig.frac_maxEvaluationSettingsConfig.frac_minEvaluationSettingsConfig.frac_stepEvaluationSettingsConfig.frac_valuesEvaluationSettingsConfig.frac_values_compEvaluationSettingsConfig.n_jetsEvaluationSettingsConfig.results_filename_extensionEvaluationSettingsConfig.saliency_effsEvaluationSettingsConfig.saliency_ntrksEvaluationSettingsConfig.shapleyEvaluationSettingsConfig.taggerEvaluationSettingsConfig.working_pointEvaluationSettingsConfig.x_axis_granularity
NNStructureConfigNNStructureConfig.activationsNNStructureConfig.attention_conditionNNStructureConfig.attention_sizesNNStructureConfig.batch_normalisationNNStructureConfig.batch_sizeNNStructureConfig.check_class_labels()NNStructureConfig.check_n_conditions()NNStructureConfig.check_options()NNStructureConfig.class_labelsNNStructureConfig.dense_conditionNNStructureConfig.dense_sizesNNStructureConfig.dips_dense_unitsNNStructureConfig.dips_loss_weightNNStructureConfig.dips_ppm_conditionNNStructureConfig.dips_ppm_unitsNNStructureConfig.dl1_unitsNNStructureConfig.dropout_rateNNStructureConfig.dropout_rate_fNNStructureConfig.dropout_rate_phiNNStructureConfig.epochsNNStructureConfig.evaluate_trained_modelNNStructureConfig.intermediate_unitsNNStructureConfig.learning_rateNNStructureConfig.load_optimiserNNStructureConfig.lrrNNStructureConfig.lrr_cooldownNNStructureConfig.lrr_factorNNStructureConfig.lrr_min_learning_rateNNStructureConfig.lrr_modeNNStructureConfig.lrr_monitorNNStructureConfig.lrr_patienceNNStructureConfig.lrr_verboseNNStructureConfig.main_classNNStructureConfig.n_conditionsNNStructureConfig.n_jets_trainNNStructureConfig.nfiles_tfrecordNNStructureConfig.poolingNNStructureConfig.ppm_conditionNNStructureConfig.ppm_sizesNNStructureConfig.repeat_endNNStructureConfig.taggerNNStructureConfig.use_sample_weights
TrainConfigurationTrainConfigurationObjectTrainConfigurationObject.continue_trainingTrainConfigurationObject.evaluate_trained_modelTrainConfigurationObject.excludeTrainConfigurationObject.model_fileTrainConfigurationObject.model_nameTrainConfigurationObject.preprocess_configTrainConfigurationObject.test_filesTrainConfigurationObject.tracks_nameTrainConfigurationObject.train_data_structureTrainConfigurationObject.train_fileTrainConfigurationObject.validation_files
ValidationSettingsConfigValidationSettingsConfig.atlas_first_tagValidationSettingsConfig.atlas_second_tagValidationSettingsConfig.figsizeValidationSettingsConfig.n_jetsValidationSettingsConfig.plot_argsValidationSettingsConfig.plot_datatypeValidationSettingsConfig.tagger_labelValidationSettingsConfig.taggers_from_fileValidationSettingsConfig.trained_taggersValidationSettingsConfig.use_atlas_tagValidationSettingsConfig.val_batch_sizeValidationSettingsConfig.working_point
- umami.train_tools.nn_tools module
CallbackBaseMyCallbackMyCallbackUmamicalc_validation_metrics()create_metadata_folder()evaluate_model()evaluate_model_umami()get_dropout_rates()get_epoch_from_string()get_jet_feature_indices()get_jet_feature_position()get_metrics_file_name()get_model_path()get_parameters_from_validation_dict_name()get_test_file()get_test_sample()get_test_sample_trks()get_unique_identifiers()load_validation_data()setup_output_directory()
- Module contents
Submodules#
umami.evaluate_model module#
Execution script for training model evaluations.
- umami.evaluate_model.evaluate_model(args: object, train_config: object, test_file: str, data_set_name: str, tagger: str)#
Evaluate only the taggers in the files or also the UMAMI tagger.
- Parameters:
args (object) – Loaded argparser.
train_config (object) – Loaded train config.
test_file (str) – Path to the files which are to be tested. Wildcards are supported.
data_set_name (str) – Dataset name for the results files. The results will be saved in dicts. The key will be this dataset name.
tagger (str) – Name of the tagger that is to be evaluated. Can either be umami or umami_cond_att depending which architecture is used.
- Raises:
ValueError – If no epoch is given when evaluating UMAMI.
ValueError – If the given tagger argument in train config is not a list.
ValueError – If Shapley is called but the tagger is not DL1
- umami.evaluate_model.get_parser()#
Argument parser for the evaluation script.
- Returns:
args
- Return type:
parse_args
umami.plot_input_variables module#
This script plots the given input variables of the given files and also a comparison.
- umami.plot_input_variables.get_parser()#
Argument parser for Preprocessing script.
- Returns:
args
- Return type:
parse_args
- umami.plot_input_variables.plot_jets_variables(plot_config, plot_type)#
Plot jet variables.
- Parameters:
plot_config (object) – plot configuration
plot_type (str) – Plottype, like pdf or png
- umami.plot_input_variables.plot_trks_variables(plot_config, plot_type)#
Plot track variables.
- Parameters:
plot_config (object) – plot configuration
plot_type (str) – Plottype, like pdf or png
umami.plotting_epoch_performance module#
Execution script for epoch performance plotting.
- umami.plotting_epoch_performance.get_parser()#
Argument parser for Preprocessing script.
- Returns:
args
- Return type:
parse_args
- umami.plotting_epoch_performance.main(args, train_config)#
Executes plotting of epoch performance plots
- Parameters:
args (parser.parse_args) – command line argument parser options
train_config (object) – configuration file used for training
- Raises:
ValueError – If the given tagger is not supported.
umami.plotting_umami module#
This script allows to plot the ROC curves (and ratios to other models), the confusion matrix and the output scores (pb, pc, pu). A configuration file has to be provided. See umami/examples/plotting_umami_config*.yaml for examples. This script works on the output of the evaluate_model.py script and has to be specified in the config file as ‘evaluation_file’.
- umami.plotting_umami.get_parser()#
Argument parser for Preprocessing script.
- Returns:
args
- Return type:
parse_args
- umami.plotting_umami.plot_confusion_matrix(plot_name: str, plot_config: dict, eval_params: dict, eval_file_dir: str) None#
Plot confusion matrix.
- Parameters:
plot_name (str) – Full path of the plot.
plot_config (dict) – Dict with the plot configs.
eval_params (dict) – Dict with the evaluation parameters.
eval_file_dir (str) – Path to the results directory of the model.
- umami.plotting_umami.plot_frac_contour(plot_name: str, plot_config: dict, eval_params: dict, eval_file_dir: str, print_model: bool) None#
Plot the fraction contour plot.
- Parameters:
plot_name (str) – Full path + name of the plot
plot_config (dict) – Loaded plotting config as dict.
eval_params (dict) – Evaluation parameters from the plotting config.
eval_file_dir (str) – File which is to use for plotting.
print_model (bool) – Print the logger while plotting.
- umami.plotting_umami.plot_probability(plot_name: str, plot_config: dict, eval_params: dict, eval_file_dir: str, print_model: bool) None#
Plots probability comparison.
- Parameters:
plot_name (str) – Full path of the plot.
plot_config (dict) – Dict with the plot configs.
eval_params (dict) – Dict with the evaluation parameters.
eval_file_dir (str) – Path to the results directory of the model.
print_model (bool) – Print the models which are plotted while plotting.
- umami.plotting_umami.plot_roc(plot_name: str, plot_config: dict, eval_params: dict, eval_file_dir: str, print_model: bool) None#
Plot ROCs.
- Parameters:
plot_name (str) – Full path of the plot.
plot_config (dict) – Dict with the plot configs.
eval_params (dict) – Dict with the evaluation parameters.
eval_file_dir (str) – Path to the results directory of the model.
print_model (bool) – Print the models which are plotted while plotting.
- Raises:
AttributeError – If the needed n_jets per class used to calculate the rejections is not in the rej_per_epoch results file.
- umami.plotting_umami.plot_saliency(plot_name: str, plot_config: dict, eval_params: dict, eval_file_dir: str) None#
Plot saliency maps.
- Parameters:
plot_name (str) – Full path of the plot.
plot_config (dict) – Dict with the plot configs.
eval_params (dict) – Dict with the evaluation parameters.
eval_file_dir (str) – Path to the results directory of the model.
- umami.plotting_umami.plot_score(plot_name: str, plot_config: dict, eval_params: dict, eval_file_dir: str, print_model: bool) None#
Plot score comparison.
- Parameters:
plot_name (str) – Full path of the plot.
plot_config (dict) – Dict with the plot configs.
eval_params (dict) – Dict with the evaluation parameters.
eval_file_dir (str) – Path to the results directory of the model.
print_model (bool) – Print the models which are plotted while plotting.
- umami.plotting_umami.plot_var_vs_eff(plot_name: str, plot_config: dict, eval_params: dict, eval_file_dir: str, print_model: bool) None#
Plot pT vs efficiency.
- Parameters:
plot_name (str) – Full path of the plot.
plot_config (dict) – Dict with the plot configs.
eval_params (dict) – Dict with the evaluation parameters.
eval_file_dir (str) – Path to the results directory of the model.
print_model (bool) – Print the models which are plotted while plotting.
- umami.plotting_umami.set_up_plots(plot_config_dict: dict, plot_dir: str, eval_file_path: str, file_format: str, print_model: bool) None#
Setting up plot settings.
- Parameters:
plot_config_dict (dict) – Dict with the plot settings.
plot_dir (str) – Path to the output directory of the plots.
eval_file_path (str) – Path to the directory where the result files are saved.
file_format (str) – String of the file format.
print_model (bool) – Print the logger while plotting.
- Raises:
NameError – If given plottype is not supported.
umami.preprocessing module#
Execution script to run preprocessing steps.
- umami.preprocessing.get_parser()#
Argument parser for Preprocessing script.
- Returns:
args
- Return type:
parse_args
umami.sample_merging module#
Execution script to run merging of ttbar samples.
- umami.sample_merging.get_parser()#
Argument parser for Preprocessing script.
- Returns:
args
- Return type:
parse_args
umami.train module#
Training script to perform various tagger trainings.
- umami.train.check_train_file_format(input_file: str)#
_summary_
- Parameters:
input_file (str) – Path to input h5 file to check
- Raises:
KeyError – If the specified key is not present in the input file
- umami.train.get_parser()#
Argument parser for the train executable.
- Returns:
args
- Return type:
parse_args
Module contents#
Umami framework used in ATLAS FTAG for dataset preparation and tagger training.